7 Rothberger ’ S Property in All Finite Powers

نویسنده

  • Marion Scheepers
چکیده

A space X has the Rothberger property in all finite powers if, and only if, its collection of ω-covers has Ramseyan properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rothberger ’ S Property in All Finite Powers

A space X has the Rothberger property in all finite powers if, and only if, its collection of ω-covers has Ramseyan properties.

متن کامل

The combinatorics of open covers (II)

We continue to investigate various diagonalization properties for sequences of open covers of separable metrizable spaces introduced in Part I. These properties generalize classical ones of Rothberger, Menger, Hurewicz, and Gerlits-Nagy. In particular, we show that most of the properties introduced in Part I are indeed distinct. We characterize two of the new properties by showing that they are...

متن کامل

Semi-Rothberger and related spaces

In this paper our focus is to study certain covering properties in topological spaces by using semi-open covers. A part of this article deals with Rothberger-type covering properties. The notions of s-Rothberger, almost s-Rothberger, star s-Rothberger, almost star s-Rothberger, strongly star s-Rothberger spaces are defined and corresponding properties are investigated.

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

Strong Γ-sets and Other Singular Spaces

Whereas the Gerlits-Nagy γ property is strictly weaker than the Galvin-Miller strong γ property, the corresponding strong notions for the Menger, Hurewicz, Rothberger, Gerlits-Nagy (∗), Arkhangel’skǐi and Sakai properties are equivalent to the original ones. We give new game theoretic characterizations for most of these properties, solve a related problem of Kočinac and Scheepers, and answer a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007